Pre-Engineering \& Computer-Aided Design I

Career
Prep
Center

Segment 5

Projection Systems: Orthographic

Orthographic Projection

Lesson Objectives

- Define Orthographic Projection and It's Main Advantage
- Explain View Selection
- Explain the Glass Box Approach
- Define First and Third Angle Projections
- Clarify Line Precedence
- Complete Two View and Three View Drawings
CAD 1
Mr. Mandl

Orthographic Projection

What is Orthographic Projection?

- Ortho - Greek word meaning perpendicular
- Shows the Views of an Object Projected in 2D, Usually the Top, Front, and Right Side Views

What is the Advantage?

- Represents Features of an Object More Accurately

Orthographic Projection

Defining the Six Principal Views or Orthographic Views

CAD 1
Mr. Mandl

Orthographic Projection

Deciding Which Views to Present

General Guidelines

- Pick a Front View That is Most Descriptive of Object
- Normally the Longest Dimension is Chosen as the Width (or Depth)
- Most Common Combination of Views to Use: Front, Top, and Side View
- Any Other View Different From the Principal Views is Called an Auxiliary View

Orthographic Projection

Mr. Mandl

Orthographic Projection

Glass Box Approach

- Most Powerful Technique to Understand Orthographic Projection
- Suspend the Object With Transparent Strings Inside a Glass Box
- Freeze the View From Each Direction (Each of the Six Sides of the Box) and Unfold the Box
- Animation illustrates glass-box approach

Orthographic Projection
 Glass Box Approach

Projection of points to the three views

Orthographic Projection
 Glass Box Approach

Projection of points to FRONT VIEW

Orthographic Projection
 Glass Box Approach

Projection of points to TOP VIEW

Orthographic Projection
 Glass Box Approach

Projection of points to RIGHT SIDE VIEW

Orthographic Projection

Glass Box Approach

Unfold the glass box

Orthographic Projection

 Glass Box Approach

 Glass Box Approach}

Unfolded glass-box

Object in the glass-box

Orthographic Projection

First and Third Angle Projections

- First Angle - International

CAD 1 - Third Angle - U.S.
Mr. Mandl

Orthographic Projection

Conventional Orthographic Views

Orthographic Projection Are The Orthographic Views OK?

Orthographic Projection

Orthographic Views Must Be In Projection

CAD 1
Mr. Mandl

Orthographic Projection

 Hidden and Center Lines- Hidden Line - Used to Represent Features That Cannot be Seen in the Current View
- Centerlines - Used to Represent Symmetry and to Mark the Center of Circles and the Axes of Cylinders, and the Axes of Symmetrical Parts, Such as Nuts \& Bolts

Orthographic Projection

1. Visible 2. Hidden
 3. Center

Orthographic Projection

CAD 1

Mr. Mandl

Orthographic Projection

Precedence of Lines

- Visible lines takes precedence over all other lines

.35 mm Line Weight

- Hidden lines and cutting plane lines take precedence over center lines
---------- $\quad 0.05 \mathrm{~mm}$ Line Weight
- Center lines have lowest precedence

Orthographic Projection

Example: Application of Precedence

Orthographic Projection

Intersecting Lines in Orthographic Projections

Solid Line Intersections

Hidden Line Special Case Intersections

Orthographic Projection

Two-View Drawings

- Some Objects Can Be Fully Described By Two Views, Look For:
- Symmetry or Bodies of Rotation

Front View
CAD 1

Right Side View

Orthographic Projection Other Two-View Examples

CAD 1

Mr. Mandl

Orthographic Projection

Review Questions

- Based on the lines of sight, orthographic projection drawing is classified as a projection technique.
- There are ___ standard principal views of orthographic projections.
- Each view in an orthographic projection concentrates on ___ dimensions of the object

Orthographic Projection
 Animation - Glass Box Theory.

