DIMENSIONING

Pre-Engineering & Computer-Aided Design Mr. Mandl Draf

Dimensioning: Why do it?

- In order to provide accurate *size* description of a part for *manufacturing*
- To describe the *relationships* between features on your part
- Often serve as *construction documents* and *legal contracts*

Dimensions Communicate...

Engineers, designers, and engineering technologists need to know...

≻Size 1.00 Ø.75 ➢ Location 1.13of all 1.50 features .75

Dimension Completely

Dimension Completely

Dimension Completely

Dimension Line "Types"

Dimensioning: Key Terms

- Dimension Line
- Extension Line
- Leader

- Finish mark
- Dimension Value

Offset

Dimensioning: Key Terms

• Tolerance

- The total allowable variation a part can have from the specified dimension
- The less variation allowed, the more the part will cost to make

UNLESS	OTHER	NISE SP	ECIFIED
ANGLES	.X		.XXX
±.5°	±.02	±.01	±.005

TOLERANCING $00 = \pm 0.2$	SCALE	SIZE		
$00.0 = \pm 0.1$ $00.00 = \pm 0.05$ angular = $\pm 0^{\circ}30$	1:1	A4		
ALL DIMENSIONS IN MM				
3rd ANGLE PROJECTION				
DO NOT SCALE				
3rd ANGLE PROJECTION DO NOT SCALE				

Dimensioning: Key Terms

• Tolerance in action

Dimensioning: Rules

1) Dimensions should *NOT* be duplicated, nor should the same information be given in two different ways.

1) Dimensions should *NOT* be duplicated, nor should the same information be given in two different ways.

2) Dimensions should be attached to the view that best shows the *contour* (curve, shape) of the feature to be dimensioned.

2) Dimensions should be attached to the view that best shows the *contour* of the feature to be dimensioned.

3) Whenever possible, *avoid* dimensioning to hidden lines.

3) Whenever possible, *avoid* dimensioning to hidden lines.

4) Avoid dimensioning *over* or *through* the object.

4) Avoid dimensioning *over* or *through* the object.

5) Whenever possible, place dimensions *between* adjacent views.

5) Whenever possible, place dimensions <u>between</u> adjacent views.

Notice this dimension is <u>not</u> between the views; *HOWEVER*, this is a better placement than dimensioning to the hidden line in the right side view. Drafting/CAD 1 Mr. Mandl

6) A *circle* is dimensioned by its *diameter* and an *arc* is dimensioned by its *radius*.

7) Holes are *located* by their *centerlines*, which may be *extended* and used as *extension lines*.

8) Holes should be *located* and *sized* in the view that shows them as a *circle*.

8) Holes should be *located* and *sized* in the view that shows them as a *circle*.

Dimensioning: Orientation of Values

- Unidirectional:
 - Read horizontally from bottom of sheet
- Aligned:
 - align with dimension line and read from bottom or right side of sheet

Dimensioning: Placement

Dimensioning: Placement

Stagger Dimension Values

Dimensioning: Placement Dimension & Extension Lines

Dimensioning: Three Systems

• Chained

- Each dimension continues from the previous one
- Tolerances stack

Baseline

- Each dimension is specified from a common baseline
- Tolerances do not stack

Dimensioning: Three Systems

- Ordinate (coordinate)
 - Each dimension comes from a datum or base line
 - Each dimension originates form zero
 - Dimension values are aligned

IVIR. IVIANOI

Dimensioning: Holes

- Described with notes
 - Can be placed anywhere on drawing
 - Always added to drawing last
- Located with two dimensions

Dimensioning: Holes

Dimensioning: Diameter Symbol

USE OF " \emptyset " TO INDICATE CIRCULAR SHAPE

USE OF "Ø" TO OMIT CIRCULAR VIEW

Dimensioning: Diameter Symbol

Dimensioning Summary

- Dimensioning drawings correctly can be as important or more important than drawing the shapes correctly.
- Good dimensioning requires practice and thought... lots of both!!!